

The Proceeding Of

The 1st International Conference Technology on Biosciences and Social Science 2016

"Industry Based On Knowledges"

17th - 19th November 2016, Convention Hall, Andalas University, Padang, West Sumatera, Indonesia

Organized by:

Animal Science Faculty of Andalas University and Alumbi Center of Universiti Putra Malaysia

Organizing Committee

SteeringCommittee:

Rector of Andalas University

Deputy Rector II Andalas University

Dean of Animal Science Faculty

Deputy Dean I of Animal Science Faculty

Deputy Dean II of Animal Science Faculty

Prof. Dr. Ir. Salam N. Aritonang, MS

Prof. Dr. Ir. H.M. Hafil Abbas, MS

Prof. Dr. Ir.Zaituni Udin, M.Sc

Chairman:

Prof. drh. Hj. Endang Purwanti, MS., Ph.D

Co-Chairman:

Prof. Dr. Ir. Hj. Husmaini, MP

Secretary:

Dr. drh. Hj. Yulia Yellita, MP Afriani Sandra, S.Pt., M.Sc

Secretariat:

Hendri Purwanto, S.Pt.,M.Si Yunizardi, S.Pt. Arif Trisman, S.Pt. Rahmat Mulyadi,SE

Treasurer:

Dr. Ir. Elly Roza, MS,

Financial

Dr. Ir. Tinda Afriani, MP.

Dr. Ir. Sabrina, MP

Editors:

drh. H. Yuherman, MS., Ph.D; Dr. Ir. Rusmana Wijaya Setia Ningrat, M. Rur.Sc,;Dr.Ir. Masrizal, MS.; Dr.Ir. Firda Arlina,MP.; Indri Juliyarsi, SP., MP.; Deni Novia, S.TP., MP.; Sri Melia, S.TP., MP.; Aronal Arief Putra, S.Pt., M.Sc; Ferawati,S.Pt, MP.; Yulianti Fitri Kurnia, S.Pt,M.Si

Meet and Greet of UPM Alumny

Prof. Dr. Marlina, Apt., MS.; Dr. Ir. Adrinal, MS.; Dr. P.K.Dewi Hayati, MS.

Contents

	Page
Organizing Committee	ii
Content	iii
Preface	iv
List Paper of Oral Presentation	٧
List Paper of Poster Presentation	xii
Keynote Lecturer	1
Papers of Oral Presentation	31
Animal Science	32
Agricultures	206
Medicenes, Public Health, Technics and Natural Sciences	380
Economy and Social Sciences	453
Papers of Poster Presentation	519

Preface

List Paper of Oral Presentation

No.	Author's	Title	Page
	ANI	MAL SCIENCES	
1.	Yulianti Fitri Kurnia and Endang Purwati	The Potential Of Dadiah From 50 Kota District, West Sumatera As a Probiotic Food Based On Total of Lactic Acid Bacteria	33
2.	Harissatria, Jaswandi, and Hendri	Acceleration Time Equilibration Cauda Epididymis Spermatozoa Buffalo with Addition of Antioxidant Gluthatione	37
3.	Jumatriatikah Hadrawi, Asep Gunawan, Niken Ulupi, and Sri Darwati	Association Analysis of NRAMP1 Gene Related to Resistance Against Salmonella pullorum Infection in Kampung Chicken	42
4.	Ahmad Saleh Harahap, Cece Sumantri, Niken Ulupi, Sri Darwati, and Tike Sartika	Polymorphism Calpain-3 (CAPN3) Gene and Association with Carcass Traits and Meat Quality in Kampung Chicken	47
5.	Wahyuni, Niken Ulupi and Nahrowi	Physical Quality of Broiler Meat Fed Diets ContainingMealworm Protein Concentrate	56
6.	Mega Sofia, Cece Sumantri, Niken Ulupi and Asep Gunawan	Identification Polymorphisms of Inos Gene and Association with Body ResistanceTrait in Kampong Chicken	62
7.	Risky Nauly Panjaitan, Niken Ulupi and Nahrowi	Investigation of Cadmium Contamination in Mealworm, Ration and Broilers's Feces	67
8.	Woki Bilyaro, Asep Gunawan, Tuti Suryati, Cece Sumantri, and Sri Darwati	Malonaldehyde and Fat Contents of Kampong-meat TypeCrossbreed Chicken	71
9.	Devi Kumala Sari, Henny Nuraini and Tuti Suryati	Quality of Gelatin Processed from Chicken Legs (<i>Tarsometa tarsus</i>) Skin with Different Method	75
10.	Linda Suhartati, Asep Gunawan, Rukmiasih, Sri Darwati, Cece Sumantri, Tuti Suryati,and Isyana Khaerunnisa	Physical and Chemical Characteristic of Chicken Meat from Kampung x Meat Type Crossbred Chicken	80
11.	Teguh Rafian, Jakaria, Niken Ulupi, Yosi Fenita, and Muhammad Andriansyah	Evaluated the Effect of Fermented Palm Sludge on Burgo Chicken Performance	85

	Donald John Calvien Hutabarat, Fransisca Rungkat Zakaria, Endang Yuli Purwani, and Maggy Thenawidjaja Suhartono	SCFA Profile of Rice RS Fermentation by Colonic Microbiota, <i>Clostridium butyricum</i> BCC B2571, or <i>Eubacterium rectale</i> DSM 17629	89
	Asep Gunawan, Ahmad Furqon, Kasita Listyarini, Jakaria, and Cece Sumantri	Growth and Carcass Characteristic in Kampong x Broiler Crossbred Divergently Selected for Unsaturated Fatty Acid	100
12.	Niken Ulupi, Cece Sumatri and Sri Darwati	Resistance against Salmonella pullorumin IPB-D1 Crossbreed, Kampong and Commercial Broiler Chicken	104
13.	Angelia Utari Harahap	Effects of Wheat Leaf Noni (Morinda citrifolia) on Carcass and Production Quail Eggs (Coturnix Coturnix Javonica) in the Different Level Concentrate	108
14.	Armein Lusi Zeswita, Vivi Fitriani and Nursyahra	Microbial Analysis on Freshwater Shell (Corbicula sumatrana) in Singkarak Lake Solok District West Sumatra	112
15.	Syaiful F. L, E. Purwati, Suardi, and T.Afriani	Analysis of Estradiol and Progesterone Hormone Levels Against Various Cell Culture in TCM- 199 Medium for Cattle <i>In</i> vitro	116
16.	Jhon Hendri and Harris Satria	Buffalo Embryo Maturation Optimization in Vitro with Addition Glutathione	125
17.	Khalil, Reswati, Y.F. kurnia, Indahwati and Yuherman	Blood Mineral Profiles of Simmental Breed Cattle with Different Feeding Systems and Reproduction Statues in Payakumbuh Region West Sumatra, Indonesia	130
18.	Lendrawati, A. Rahmat and J. M. Nur	Performance of Broiler Chicken Fed Turmeric and Zinc Mineral under Heat Stress	134
19.	Muslim	Utilization of Plant Titonia Flowers (<i>Tithonia diversifolia</i>) in The Ration on The Performans of Broiler	138
20.	Resolinda Harly, Almasdi and Sri Mulyani	Analysis of Factors Influence Palm Oil Farmers Personal Income Trough Buffalo's Breeding	144
21.	Retno Wilyani and Moch Hisyam Hermawan	Nutritional Value of Persimmon Yoghurt (<i>Dyospyros kaki</i>) as Healthy Soft Drink to Make Healthy and Fitness: An Analysis	148

22.	Fenita Y, Rafian T, Andriansyah M, Saepudin R, and Zain B	Evaluated the effect of fermented palm sludge on burgo chicken performance	157
23.	Zulfa Elymaizar, Arnim, Salam N Aritonang, Mardiati Zein, and Elly Roza	In-Vitro Rumen Digestibility of Goat Feed by Patikan Kerbau (<i>Euphorbia hirta</i> L.) Herbal Supplemented	161
24.	Salam N. Aritonang, Elly Roza and Lailya Rahma	The Adding of Saccharomyces cerevisiae on Moisture, Acidity and Lactic Acid Bacteria Colony Count of Yogurt from Goat's Milk	166
	Yuherman, Nur Asmaq and Endang Purwati	Characteristics and Antimicrobial Activity of Lactic Acid Bacteria Isolated from Dadih of Agam Regency	172
25.	Sri Melia, Endang Purwati, Yuherman, and Jaswandi	A Comparative Study on Composition and Microbiological of Buffalo Milk From Different Location in West Sumatra	177
26.	Yunizardi, Ade Rakhmadi and Endang Purwati	Effect of Addition White Oyster Mushroom (<i>Pleurotus ostreatus</i>) and Carrot (<i>Daucus carota L</i>) In Probiotic Duck Nugget On Protein, Calcium and Organoleptic Value	182
27.	Tertia Delia Nova, Sabrina and trianawati	The Effect of level Flour turmeric (Curcuma domestica Val) ration toward carcass local duck	191
28.	T. Astuti, G. Yelni, Nurhaita, and Y. Amir	Effect of the Form Complete Feed With Basis Fermented Palm Oil Fronds on the Content of Moisture, Crude Lipid, and Crude Protein for Ruminants	202
	A	AGRICULTURES	
29.	I Ketut Budaraga, Arnim, Yetti Marlida dan Usman Bulanin	Effect Of Combination Treatment Of Liquid Smoke Concentration, Soaking Time, Packaging And Different Storage Time To Yield And Moisture Content Nila Fish Fillet (Oreochromis Niloticus)	207
30.	M. Said Siregar, Arif Kurniawan and Syakir Naim Siregar	Study On The Manufacture Of Nuggets From Natural Rubber Seed (Hevea Brasilinsis Mull. Arg)	218
31.		Effect Of Benzyladenine (BA) And Duration Of Shading On Growth And Quality Of Dracaena Sanderiana And Codiaeum Variegatum	228

32.	Azwar Rasyidn, Gusmini, Ade Fitriadi and Yulmira Yanti	Soil Microbes Diversity Between Hilly and Volcanic Physiography And Their Effect To Soil Fertility	236	
33.		Application of Green Manure and Rabbits Urine Affect Morphological Characters of Sweet Corn Plant (<i>Zea mays</i> saccharata Sturt) in Lowland of Deli Serdang District	246	
35.	Dewi Rezki, Siska Efendi, and Herviyanti	Humic Substance Characterization of Lignite as a Source of Organic Material	251	
36.	Jamilah, Sri Mulyani [,] and Juniarti	Nutritional Composition of Ruminant Forage Derived from Rice Crops (<i>Oryza Sativa</i> L.) that Applicated by <i>C.odorata</i> Compost	254	
37.	Mega Andini, Riska, and Kuswandi	Effectiveness of Liquid Smoke to Control Mealybug on Papaya	262	
38.	Muhammad Thamrin, Desi Novita, Fitria Darma	Factors Affecting Farmers Decision to Convert Wetland	266	
39.		The Occurrence of Somaclonal Variation on The Pineapple <i>In vitro</i> Culture as Detected by Molecular Markers		
40.	Riska and Jumjunidang	Competitiveness of Fusarium oxysporum. sp cubense VCGs 01213/16 (Tropical race 4) Among Several VCGs in Race 4 on Ambon Hijau Cultivar	283	
41.	Fridarti and Sri Mulyani	Changes nutrients by microbial fermentation chocolate waste indigenous result of the additional mineral phosphor and sulphur in-vitro	291	
42.	Sri Hadiati and Fitriana Nasution	Clustering and genetic distance some salak species (Salacca spp) based on morphological characters	295	
43.	Asep Dedy Sutrisno, Yusman Taufik, and Jaka Rukmana	Optimalization Flour Composite Nutritiose as Basic Materials Processing for Food Products	303	
44.	Sri Utami, Suryawati and Ermeli	KNO3 Concentration and Soaking Time Effect on Breaking Seed Dormancy and Seed Growth of Sour-Sop (<i>Annona muricata</i> L.)	310	

45.	Susilawati, Dewi Sartika, and Mochamad Karel Saputra	Effect of Kepok Banana (musa paradisiaca linn) Peel Flour Addition as a Stabilizer on Chemical and Organoleptic Properties of Ice Cream					
46.	Ubad Badrudin, Syakiroh Jazilah, and Budi Prakoso	The effect of soil submersion duration and ameliorant types on growth and yield of shallot at Brebes Regency	325				
47.	Yulfi Desi, Trimurti Habazar, Ujang Khairul, and Agustian	Disease progress of Stewart's Wilt (Pantoea stewartii subsp. stewartii) on sweet corn	330				
48.	Yusnaweti	On Growth Response And Results Of Upland Rice Due To The Allotment Of Some A Dose Of Compost Bamboo Leaves	337				
49.	Fadriani Widya, Darmawan, and Adrinal	Rice husk biochar application in traditional paddy soil and its effect of nutrients vertical distribution	343				
50.	Ragapadmi Purnamaningsih, Ika Roostika, and Sri Hutami	Embryogenic Callus Induction and Globular Embryo Formation of Kopyor Coconut (Cocos nucifera L.)	350				
51.	A. Sparta, L. Octriana, Nofiarli, N. Marta, Kuswandi, M. Andini, and Y. Irawati	The Role of Cow Manure to Reduce The Need of Nutrient N Inorganic In Banana Plant Vegetative Growth	357				
52.	Wijaya Edo Rantou	Analysis Influence of Technical Competence on Company's Performance In Electrical Engineering Company In Bandung	362				
53.	Desi Ardilla, Herla Rusmarilin, and Adi Purnama	Study The Physical And Chemical Properties Of Bioethanol From Pineapple Skin (Ananas comusus L.Merr)	370				
54.	Masyhura MD, Budi Suarti, and Evan Ardyanto AS	Increase Moringa Leaf Powder and Long Roasting on Protein Content in the Making of Cookies from Mocaf (Modified Cassava Flour)	376				
M	EDICINES, PUBLIC HEALTH	, ENGINEERING, AND NATURAL SCIEN	CES				
55.							
56.	Dien GA Nursal, Rizanda Machmud, Eryati Darwin, Nana Mulyana	Implementation Patient Safety Standards in Basic Emergency Obstetric Care Community Health Center (BEOC_CHC) Padang	389				

57.	Dewi Sartika, Susilawati, and Mumpuni Uji Kawedar	Survey of Salmonella Contaminated Vannamei Shrimps in Lampung	396
58.	Ferra Yanuar	Determinants of Birth Weight at Various Quantiles in West Sumatra	403
59.	Hardany Primarizky, Ira Sari Yudaniayanti, and Djoko Galijono	*	408
60.	Nefilinda	Influence of Education and Local Wisdom on Environment Villages in Minangkabau	413
61.	Masri, E., Asmira,S and Verawati	Local Food Development from Combination Siarang Variety Of Black Rice (Oryza Sativa L.Indica) And Yellow Pumpkin (Cucurbita Moschata) To Prevent Anemia For Pregnant Women	420
62.	Dharma, Yunazar Manjang, and Febria Elvy Susanti	Development of Antimicrobial Analysis of Lactic Acid Bacteria Isolated from VCO (Virgin Coconut Oil) Fermentation Process Against Bacteria in The Secretion of CSOM	425
63.	Suci Rahayu, Darmawan Saptadi, and Febi Reza Fitriani	The Influence of Dicamba in Combination with BAP on Callus Induction and Proliferation of Centella (Centella asiatica L.)	432
64.	Christina J. R. E. Lumbantobing, Endang Purwati, Sumaryati Syukur, and Eti Yerizel	Triglyceride lowering effect of <i>Garcinia</i> atroviridis leaf tea from Sijunjung - West Sumatra on obese subjects in Medan, North Sumatra	440
65.	Netty Suharti	Preparation and Characterization of Ethanol Extract of Mychorryzae Induced Ginger as Raw Matherial for Anti Breast cancer Nano suspension Formulation	449
	ECONOMY	AND SOCIAL SCIENCES	
66.	Ike Revitaa, R. Trioclariseb, Inesti Printa Elisyac	Reflections Of Social Reality In The Activities Of Women Trafficking In West Sumatera	454
67.	Andri, Ida Indrayani and Rahmi Wati	Technical Efficiency Analysis of Poultry in District of 50 Kota (Stochastic Frontier Production Function Approach)	460

68.	Arif Fadhillah	Fadhillah Teaching Accounting in Business School: A Personal Reflection					
69.	Wijaya Edo Rantou	Analysis Influence of Technical Competence on Company's Performance In Electrical Engineering Company In Bandung	470				
70.	Ira Apriyanti, Desi Novita, and Pandhu Ahmad Pangestu	Efficiency of Marketing Distribution of Palm Oil in Sub District of Selesai Regency of Langkat	477				
71.	Yeyep Natrio, Afdhal Rinsik, Gusmaizal Syandri	The Occurance Of Transitivity And Suicidal Motives On Famous Public Figure`S Suicide Letters	483				
72.	Yusmarnia and Mahdi	An analysis of Marketing Efficiency of Sapodilla in Nagari Sumpur sub district of Tanah Datar, West	494				
73.	Jusuf Wahyudi, Hesti Nur'aini and Lina Widawati	Information Systems of Eradication Pests and Diseases Crops for Agriculture Extension Instructor	501				
74.	Desi Novita and Ira Apriyanti	The Regional Investment Competitiveness In Binjai City	506				
75.	Khairunnisa Rangkuti, Desi Novita, and Bima Mahdi	The Impact of Rising Soybean Prices to Tofu Industry Small Scale in Medan	511				

List of Poster

No. Author's Title Pag									
110.		MAL SCIENCES	1 4gc						
1.		Total Gas Production, Methane and Rumen Fermentation Characteristics of Rejected	521						
2.	Nita Yessirita, Tinda Afriani, and Sunadi	The Supplementation of Amino Acid Methionine-Lysine on the Protein Quality of Leucaena Leaf Meal Fermented with Bacillus laterosporus	529						
	A	AGRICULTURES							
3.	Willy Pranata Widjaja, Sumartini	Optimization Of Koji Concentration And Fermentation Time To Characteristics Of Modified Sorgum (Sorghum Bicolor L Monench) Flour	536						
4.	Kuswandi, Makful, Sahlan, and Mega Andini	Evaluation Performance Of Some Hybrid Of Watermelon From Indonesian Tropical Fruit Research Institute	545						
5.	A. Sparta, R, Triatminingsih, Y.Z. Joni, and Nofiarli	The Using of Thidiazuron to Induce the Mangoesteen Shoot (Garcinia mangostana L.) by Direct Organogenesis	550						
6.	Ira Sari Yudaniayanti, Bambang Sektiari L', Hardany Primarizky	Healing Quality Of Femoral Fractures In Ovariectomized Rats With Therapy Of Cissus Quadrangularis Extract Shown by The Expression Of Type I Collagen	555						
7.	Sri Hadiati and Tri Budiyanti	Parameters Genetic of Fruit Component Characters on Snake Fruit (Salacca sp.)	562						
8.	Riry Prihatini, Tri Budiyanti, and Noflindawati	Genetic Variability of Indonesian Papaya (carica spp.) as Revealed by RAPD (Rapid Amplified Polymorphic DNA)	567						
		MEDICINE							
9.	Regina Andayani and Fivi Yunianti	Reaction on a-Mangostin Content in the Ethyl Acetate Extract of Mangosteen Rind (<i>Garcinia mangostana</i> L.) by High Performance Liquid Chromatography	575						
10.	Nini Marta, Kuswandi, Liza Octriana, and Nofiarli	The effectiveness test of herbicides 2,4 D, glyphosate, paraquat on low dose as growth regulator on papaya seedling	582						

The	1 st	Conference	Technol	logy on	Biosciences	and	Social	Sciences	2016
1110	_	Connectence	I CCIIIIO		Diosciclicos	auu	Dociai		

KEYNOTE LECTURER

Nutritional Composition of Ruminant Forage Derived from Rice Crops (Oryza Sativa L.) that Applicated by C. odorata Compost

Jamilah^a, Sri Mulyani^b and Juniarti^c

^aAgrotechnology Department, Agriculture Faculty, Tamansiswa University; ^bAnimal Husbandry Department, Agriculture Faculty, Tamansiswa University ^cSoil Science Department, Agriculture Faculty, Andalas University Corresponding author:....

Abstract

The study about Nutritional Composition Of Ruminant Forage Derived From Rice Crops (Oryza Sativa L.) that Applicated By C.odorata Compost had been conducted in the District Koto Tangah, Padang, West Sumatra began in June 2015 through October 2015. The study aimed to get good quality forage and yield in the cultivation of two varieties rice crops that applicated C.odorata compost. Varieties tested were Pandan Wangi and Cisokan. The experiment was arranged in the split plot design. The main plot there were 2 levels cutting rice forage, which was not cut (Po) and cut as high as 15 cm of the soil surface (P1). The subplot was *C.odorata* compost (CC) combined with recommendation fertilizer dose (RFD) consisting of 3 levels; B1. 5 Mg ha⁻¹ CC + 100% RFD; B2. 7,5 Mg ha⁻¹ CC + 75% RFD and B3. 10 Mg ha⁻¹ CC + 50% RFD in three replications. Data were analyzed in variance at 5% significance level, and HSD test at 5% significance level. The parameters were ADF, NDF, crude Protein, crude fiber, cellulose, hemicellulose, lignin, silicates, plant height, maximum tillering, rice yield. The results showed that CC + RFD did not show different effects both on the growth and rice yield. Production of the highest forage obtained from Pandan Wangi rice crop reached 7,17 Mg ha⁻¹. Crude protein as much as 9.83% and 13,99%, crude fiber amounted to 18,31% and 20,15%, the rice yield as many as 6,29 Mg ha⁻¹; 4,21 Mg ha⁻¹ for Pandan Wangi and Cisokan respectively.

Keywords: C.odorata compost, Pandan Wangi, Cisokan, ruminants forage

1.Introduction

For thousands of years, rice has been a staple food source for many Asian countries like Indonesia, China, Japan and India. It's wonderfully versatile and is used as a base for many dishes from curries and stir-fries, to sushi and even puddings! A grain of rice is a seed from a special kind of grass called *Oryza* sativa. This grass needs lots of rain as it grows, and then dry conditions before it is harvested. Rice is grown in water-logged fields known as 'rice paddies' across Asia, but also in a few European countries, like Italy and Spain. Once the rice is harvested, the grains are shaken from the grasses, and their country also imports beef, in 2012 total beef rough brown husks removed. Generally every imported Indonesia reached 40 338 tonnes

region in Indonesia, especially in West Sumatra, paddy fields spread out evenly providers everywhere. Demand for rice in Indonesia continues to increase every year, simultaneously with the increasing population. Likewise, in addition, people also need a rice protein supplied from ruminant origin meat is maintained. Until 2016, Indonesia still imports of ruminants such as cattle and rice. However the tendency imports also decreased in connection with the intensification of land use as source provider of rice yield and cattle feed.

In addition to rice, the Indonesian

worth US \$ 156.138 million. Total costs incurred for the import of rice and cattle amounted to 1101.738 million US \$ or the equivalent of 11.01 trillion rupiah (*Redaksi PI.*, 2013; http://finance.detik.com/read/2013/02/04/075 031/2160062/4/selain-daging-ini-bahan-pangan-yang-dibeli-ri-dari-luar-negeri?f991104topnews); (Statistika, 2016). This proves that Indonesia still has not sovereigned to food and meat.

Indonesia mostly farmers also raise The big problem for farmers is to provide productive grasslands, that available forage needs of cattle. In fact pasture land has undergone a massive others: conversion. among for the construction of complex industrial factories, housing and some other goals. So the pasture available was be very limited. May not be planted wetland grasses by farmers, but likely to cultivate paddy rice also take advantage of young rice crops to be used as fodder.

There is an interesting case of rice cultivation activities, namely the fresh forage can be cut and without disturbing the rice yield. However there are some things that must be considered, so that the production of forage and grain yields remain high. If cuts were made early, it will be obtained the small amount of forage, but if the cut will be done lately, this would be concerned obtaining harvests decline, so farmers failed to harvest. Therefore, it needs the right time in an effort to cut forage in rice cultivation. Forage fodder is grass forage or that have nutritional adequacy rate appropriate for ruminants, not all can be categorized forage grass fodder. For that farmers need to grow their own grass forages superior categorized as such. Some types of this forage was from Indonesia and imported from abroad many are developed in Indonesia (Jamilah Helmawati, 2015); (http://kesehatanternak.blogspot.com/2013/02/hmt-hijauanpakan-ternak.html, 2015).

In addition to caring moment precise cutting, the primary need to live rice crops also should drawn attention. Fertilizer right should be carried out, among others, can be either organic manure and fertilizers. (Jamilah, Adrinal, Khatib, & Nusyirwan, 2011) reported that administration *C.odorata* compost can improve nutrient uptake, growth and development of paddy rice roots. Integration cultivation pattern is considered more efficient, and can optimize the limited wetland. Need to know the quality of forage, milled rice produced by cutting the beginning of flower primordia on two varieties of rice plants from application of *C.odorata* compost accompanied by artificial fertilizers in paddy fields.

The research objective is to get fodder and higher rice yield in the cultivation of rice and cattle integration of the two rice varieties by *C.odorata* compost and fertilizers.

2. Methodology

The experiments was conducted for five months started in June 2015 through October 2015 in the paddy field farmer in the Padang city, the type of soil is Ultisol. Varieties tested were Pandan Wangi and Cisokan. The experiment was arranged in the split plot design. The main plot there were 2 levels cutting rice forage, which was not cut (Po) and cut as high as 15 cm of the soil surface at the beginning of flower primordia (+ 47 hst) (P1). The subplot was *C.odorata* compost (CC) combined with recommendation fertilizer dose (RFD) consisting of 3 levels; B1. 5 Mg ha⁻¹ CC + 100% RFD; B2. 7.5 Mg ha⁻¹ CC + 75% RFD and B3. 10 Mg ha⁻¹ CC + 50% RFD in three replications. Data were analyzed in variance at 5% significance level, and HSD test at significance level. Recommendation fertilizer dose as 100 kg ha⁻¹ urea + 50 kg ha⁻¹ ZA, 150 kg ha⁻¹ SP36 and 100 kg ha⁻¹ KCl. Experiments conducted at SRI paddy in the pattern, 2 seeds in 1 planting hole, muddy, until the plant enters the flower primordia, a

spacing of 25 x 25 cm, and each plot size 2 x Cisokan. Yield of Cisokan had not reduced 2 m. significantly by cutting but decrease to

The parameters were ADF, NDF, crude Protein, crude fiber, cellulose, hemicellulose, lignin, silicates, plant height, maximum tillering, rice yield. Experimental data were analyzed using the F test 5% significance level, and conducted a further test HSD significance level of 5%, if the treatment significantly. The results of the analysis in the form of nutrient content in *C.odorata* Compost, nutrient content of forage fodder, not analyzed statistically, but compiled in table only.

3. Results and Discussion

Effect of fertilization on growth and yield of dry grain harvest is presented in Table 1. The interaction between fertilization and cutting can be seen in the production of dry grain harvest good varieties of rice Cisokan or at Pandan Wangi. Effect of fertilizer F2 (7.5 Mg ha⁻¹ *C.odorata* compost + 75% of artificial fertilizers) influenced the plant height and yield of rice grain. Tillers per clum was higher for PandanWangi than

Cisokan. Yield of Cisokan had not reduced significantly by cutting but decrease to Pandan Wangi. The lower dose of organic fertilizer or higher amounts of artificial fertilizers, the plants grow better.

This was because artificial fertilizer as a fertilizer that is easily soluble and available, able to provide nutrients than organic fertilizers. As explained by (K. Mengel, Kirkby, Kosegarten, & Appel, 2001); (Weil & C.Brady, 2016) many macro nutrient elements needed by plants to produce component parts of vegetative and generative plant. Therefore, the availability of elements of N, P and K were quite decisive outcome dry grain harvest. Fragrant Rice Cisokan and GKP together produce more than 6 Mg ha⁻¹. Even at Cisokan that cut to get forage will not give worst effect to yield. According to (Mengel, 1995) that nutrient uptake per acre increases rapidly from the 4 leaf stage to just prior to tasseling, and then stays at high levels until after pollination. During this period the crop is growing very rapidly and the demand for nutrients to support that growth is high.

Tabel 1. Plant height, maximum tillering and production of dry grain rice harvest Cisokan and Pandan Wangi.

Fertilizer	Plant height (cm)		Maximum clump	Maximum tillering per clump		Yield of rice grain per plot (kg)			
		Pandan		Pandan	Cisok	an	Pandan '	Wangi	
	Cisokan	Wangi	Cisokan	Wangi	P0	P1	P0	P1	
B1	81.50aB	76.33bAB	29.67 bA	31.33 aA	2.63	2.18	2,78a	1,67b	
B2	86.00aA	73.00bB	25.83 b B	30.50 aA	2.62	2.62	2,30a	1,67b	
B3	80.50aB	78.50bA	24.83 bB	26.83 aB	2.37	2.75	2,40a	1,72b	
average average	82.67a	75.94b			2.54	2.52	2,49a	1,68b	
Mg /ha					6,35 a	6,29 a	6,24a	4,21b	
CVA (%)	3,01					15,03		17,52	
CVB (%)	6,08					9,27		11,82	

The numbers followed by the same capital letter in the same column and numbers followed by the same small letters on the same line are not significantly different according HSD 5% significance level.

Explanation: B1, 5 t ha⁻¹ *C.odorata* compost + 100% fertilizer; B2; 7,5 t ha⁻¹ *C.odorata* compost + 75 fertilizer; B3. 10 t ha⁻¹ *C.odorata* compost + 50% fertilizer; P0, not cut dan P1, cut at primordia age phase (47 days after planting.)

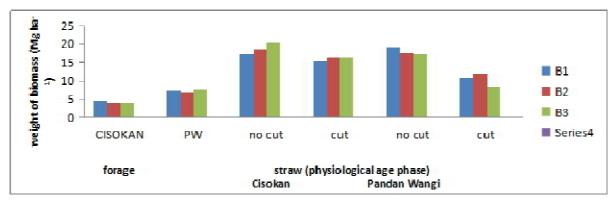


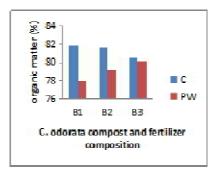
Figure 1. Effect of *C.odorata* compost + fertilizer to forage and straw weight of Cisokan and Pandan Wangi

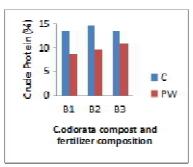
2. Production and nutritional value of forage.

Giving compost and fertilizers showed no difference in the results of forage (Figure 1). Broadly speaking ruminant feed could be divided into two namely feed and feed reinforcing fibers, this fiber feed them grass and the amplifier is consentrate. Forage or Animal Feed should be cut at the right age, because if they are too old forage then the quality will be worse.

Pandan Wangi produced forage higher than Cisokan varieties. The results of the high forage is significantly affected by the maximum saplings in each variety. Plants that have a high maximum tillering forage will produce higher as well. Organic C.odorata compost gave effect longer and can improve soil fertility is inherently slow. Fertilizer is available and can be used again by the crops in the next growing season. It has been described by Brady (1984); Nyakpa et al (1988); Hakim (1985) that organic fertilizer, a natural fertilizer that can improve the quality of physics, chemistry and soil biological. Compost typically provide a longer effect than fertilizer. Manure can decrease the negative effects of the provision of artificial fertilizers and pollution are given excessive. This is because the organic fertilizer has carboxyl and phenolic capable of fixing metal ions that pollute the environment.

The results of the animal feed analysis, showed that the organic matter content, ash and crude fiber crude protein is generally


higher than grass. This is due to rice crops that applicated by compost and fertilizers are optimal, so it will affect nutrition. The results of the analysis of the nutrient content forage was presented in Figure 2 and 3.


In general, organic matter content, crude protein (CP) and crude fiber (SK) varieties Cisokan higher than Pandan Wangi. forage of rice crops more nutritional content than elephant grass had CP reached 8,03% and CF reached 39,09% (Antonius, 2009). Nutrient content is also generally higher than the nutrients in rice straw either on Cisokan and Pandan Wangi. Jamilah et al., (2015) proved generally crude protein content in rice straw is only 50% compared to the content of the forage harvested at primordia age phase. When compared with the results of research (Sutardi et al., 1982; Zulbardi et al.,1983; Sitorus, 1989; Jackson, 1977) proving that the protein content of rice straw varies between 3-5%.

However, when compared to the crude protein and Crude Fiber contained in rice straw Cisokan and Pandan Wangi (Figure 2 and 3), then the quality of the straw was much lower than the grass, although the crude fiber content was still lower than the grass.

When compared with Antonius report (2009) that the dry matter content physiologically mature straw reaches 44.88%; 4.5% crude protein; 30,31% crude fiber. Rice bran contains 10.61% crude protein; 14.13% crude fiber and 91.31% dry matter. For

elephant grass, 20.23% dry matter; 8.71% crude protein and 28.35% crude fiber.

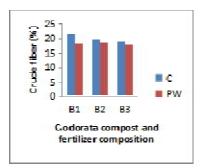
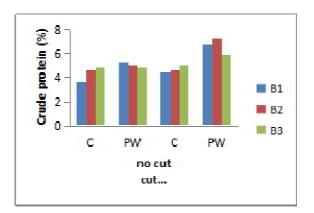



Figure 2. Organic matter content (BO), crude protein (CP) and Crude Fiber (CF) on two varieties of rice which be cut when primordia age phase

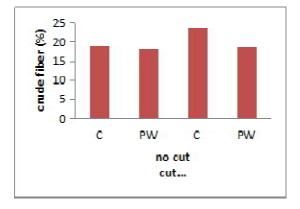
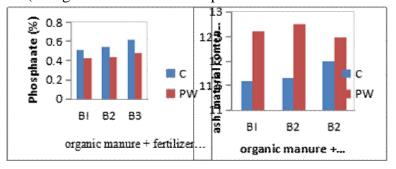


Figure 3. Crude protein (CP) and Crude Fiber (CF) of Cisokan (C) and Pandan Wangi (PW) of rice straw when physiological age phase

When compared to the crude protein of the rice plants were cut 47 days after planting (primordia age phase), with elephant grass plants, the rice plants are superior quality. Zulbardi (2000) showed that the levels of crude protein grass good quality ranges from 9%, while Zubaidah (2008) found ranged from 8.08 to 10.86%, still lower than the crude protein content of rice plant was cut 47 days after planting. Crude protein in forage origin of the rice plants are cut when the plant 47 HST containing 2-fold compared to the hay crop reached mature age physiologically.

Ruminant livestock forage require materials with a value of at least 50-55% digestibility and crude protein (CP)

approximately 8% (Thaliba, et al., 2000). When compared with the results of forage cultivation pattern integration of cattle and rice, the rice plants when the initial cut into the primordial interest (47 HST), PK reached 14% in plants Cisokan, and Pandan Wangi CP reached 10.94%, much higher quality to be used as ruminant feed.


The ash content of the mineral material content which does not include constituent organic material in the plant. The ash content is derived from the mineal elements absorbed by plants from the soil like elements K, Ca, Mg, Fe, Mn, Cu, P, and there is mention N also belong to it. The content of phosphorus and calcium are available from rice straw is also low. In addition to the low protein

content, rice straw also has a value of dry matter and organic matter is low, the row between 34-52% and 42-59% (Winugroho et al., 1983). This led to the low digestibility of dry matter intake low ability, which is only 2% of body weight (Jackson, 1977; Utomo et al., 1998). When compared with the results of research Zubaidah (2008), proving that the ash content in the elephant grass plants from 8.24 to 12.48% and Zulbardi (2000) reported at 10.29%. Production of organic matter. crude fiber, ash and phosphate were higher in plants fertilized with F1 treatment (5 Mg ha⁻¹ fertilizer C.odorata compost + 100% fertilizer) compared to treatment plants that are fertilized F2 and F3 (Figure 4).

Cisokan rice plants and Pandan Wangi cut early when entering the flower primordia, able to produce up to 2.9 Mg of dry matter per hectare, organic material up to 2.4 Mg ha⁻¹. Varieties Cisokan more response from application of fertilizer F1, F2 and F3 compared, while Pandan Wangi more responses if given fertilizer F3. Cisokan on rice plants, in general production of the highest nutrient fertilization treatment results F1 (5 Mg ha⁻¹ *C.odorata* compost + 100%

artificial fertilizers), while Pandan Wangi higher nutrient content of F3 treatment outcome (10 Mg ha⁻¹ compost *C.odorata* + 50% artificial fertilizers). Striking differences from the production of nutrients produced from forage varieties of different origin, caused also by the different plant ages. Cisokan an old plants longer than Pandan Wangi, so the ability of the recovery is more adequate than Pandan Wangi in producing top stover and establishment of rice plants flowering in time.

In Table 2 and 3, featuring content of NDF, ADF, lignin, silica, cellulose and hemicellulose in green forage. Van Soest analysis results indicate that rice Pandan Wangi values ADF and cellulose, higher than rice and Cempo Cisokan Red. Provision of fertilizer 5 t ha-1 compost C.odorata + 100% artificial fertilizers produce high levels of ADF and cellulose lower than if the compost increased the proportion of up to 10 Mg ha⁻¹ of all varieties of rice. But conversely, the higher the composting C.odorata, hemicellulose content of silica and getting lower.

material in 2 rice crop varieties at primordial and hysiological age phase (%).

Figure 4. Phosphate a and Ash

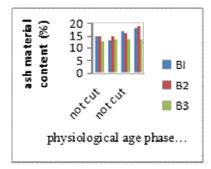


Table 2. ADF, NDF, Lignin and Silica of forage of Cisokan and Pandan Wangi at primordia age phase

	ADF (%)		NDF (%)		Lignin		Silica	
Fertilizer	Cisokan	Pandan Wangi	Cisokan	Pandan Wangi	Cisokan	Pandan Wangi	Cisokan	Pandan Wangi
B1	35.96	33.25	70.79	59.38	5.23	2.50	5.19	6.37
B2	37.12	40.30	69.17	64.70	9.75	3.37	5.86	6.98
B3	35.51	43.69	61.84	66.18	3.43	5.88	6.28	5.67

TD 11 2	C 11 1	1 1	' 11 1	C C .	. 1.	1
Table 3		and he	micelliilose	of forage at	nrimordia	age nhace
Table 3.	Condition t	mu nc	micchalosc	or rorage at	primorus	i age phase

Fertilizer	cellulos	se (%)	hemicellulose (%)		
	Cisokan	Pandan Wangi	Cisokan	Pandan Wangi	
B1	25.24	24.38	34.83	26.13	
B2	21.51	29.96	32.05	24.40	
В3	25.63	28.75	26.33	22.49	

The content of cellulose in rice Pandan Manyi Wangi, higher indicates that the feed that comes of this rice has a better digestibility than other types of rice. When compared with the nutrient content of grass Ruzi developed by Hutasoit et al., (2009) prove that the NDF and ADF on grass Ruzi (*Brachiaria convey ruziniensis*) used is relatively young so it can deliver good nutrition, such as protein content is high (14%), 50-61% NDF and ADF content ranges from 35-40% (Hutasoit, et.al., MPK. 2009).

The higher levels of silica in the feed will also complicate the digestibility for ruminants. Pandan Wangi have a silica content higher than Cisokan. The effect of compost is also something to do with the content of silica in the rice straw, the lower the composting, the higher silica content. According to (Laboratorium Team, 2013) if a low protein content causes the digestibility of only 40% result in a lower dry matter intake (less than 2% weight of livestock). It was clear, without adding concentrate was not possible to increase the production of livestock, may even be able to reduce the production. Another problem affecting the quality of hay is the high content of lignin and silica causing so low digestibility.

Conclusion

C.odorata Compost + FDR did not show different effects both on the growth and rice yield. Production of the highest forage obtained from Pandan Wangi rice crop reached 7.17 Mg ha⁻¹. Crude protein as much as 9.83% and 13.99%, crude fiber amounted to 18.31% and 20.15%, the rice yield as

many as 6.29 Mg ha⁻¹; 4.21 Mg ha⁻¹ by Pandan Wangi and Cisokan respectively.

Acknowledgement

This study is part of research grants Strategy The fiscal year 2015 thanks are conveyed to the Director of Research and Community Services, which has funded these activities through the Ministry of Education and Culture, with contract number: 262 / MPK.A4 / KP2014; Director General of 2015 Higher DIPA DIPA No. 023.04.1.673453 / 2015, dated 14 November 2014, the Letter of Assignment Agreement in Framework Research Programme Implementation No. 10 / CONTRACT / 010 / KM / 2015, dated February 16, 2015.

References

Afandi, R., 2002. Ilmu Kesuburan Tanah. Yogyakarta: Penerbit Kanisus.

Bachtiar, E., 2006. Soil Science. Medan: Fakultas Pertanian USU.

Buckman NC, Brady HO. 1987. Soil Science. Jakarta: PT. Bharata Karya Aksara.

Beranda Jembatan Inovasi Teknologi. 2014. 10 items food Indonesia still imports. http://beranda.miti.or.id/10-bahan-pangan-indonesia-masih-impor/, akses 4 April 2014.

BPS.2013. Indonesia in Figures. Central Bureau of Statistics

Haryanto, B. 2003. Jerami padi fermentasi sebagai ransum dasar ruminansia. News Agricultural Research and Development. 25 (3): 1–2.

Hendra Z. 2006. Study of Carbon And Nitrogen Ratio Of Onggok And Urea In Production By biopesticide *Bacillus thuringiensis* Subsp. *Israelensis*. Faculty of Agricultural Technology, Bogor Agricultural University.

- http://www.artikelbagus.com/2012/01/sekam-padi-kulit-gabah.html#ixzz3i6F3W6Md formed on rice contain carbohydrates dominant, 20.
- http://kesehatan-ternak.blogspot.com/2013/02/hmt-hijauan-pakan-ternak.html. 2015. Livestock, Forage, Animal Feed. http://kesehatan-ternak.blogspot.com/2013/02/hmt-hijauan-pakan-ternak.html.
- Hutasoit, Rianto, Juniar Sirait dan Simon P. Ginting. 2009 Technical instructions Cultivation and Utilization *Bachiaria ruziziensis* (Grass Ruzi) As Foliage Feeding Goats. Centre for Research and Development of Animal Husbandry Agency for Agricultural Research and Development Department of Agriculture.
- Jamilah, Yohanes dan Widodo Haryoko. 2008. Residual effect of compost of *C.odorata* and economical Guano effort of manure made in for the crop of onion at marginal land; ground.Jurnal Embrio. Agriculture Faculty Tamansiswa University Padang ISSN N0. 2085-403X Vol.(I) No. 2: 63-73.
- Jamilah, Adrinal, Khatib, I., & Nusyirwan. (2011). Waste Land Reclamation impacting Cement Raw Material Mine Through the Utilization of Organic Fertilizer In Situ To Improve Results Rice. In the National Seminar on the topic of Organic-Based Integrated Agricultural Development Toward Sustainable Agricultural Development (pp. 172–189).
- Jamilah, & Helmawati. (2015). Study Analyse Farming

- Integrate Paddy Rice field and Livestock feed of Ruminansia Support Sovereignty of Food and Flesh In Face Of Economic Society of Asean 2015. In Seminar National of Readiness of Indonesia in face of Free Market [of] Asean Through Reinforcement Of Implementation of Corporate Healthy Governance (Vol. 3, pp. 254-266). Field: Library of National of RI.
- Laboratorium, T. I. dan T. P. F. P. I. (2013). Knowledge of Food-Stuff Livestock. *CV NUtrisi Sejahtera* (Vol. 53). Bogor: CV Nutrisi Sejahtera. http://doi.org/10. 1017/CBO978 11074 15324.004
- Mengel, D. (1995). Roots , Growth and Nutrient Uptake. Agronomy Department, Purdue University West Lafayette, IN 47907-1150 While.
- Mengel, K., Kirkby, E. a., Kosegarten, H., & Appel, T. (2001). Principles of Plant Nutrition Edited by and, 5th, 849 pp. http://doi.org/10.1007/978-94-010-1009-2.
- Statistika, B. P. (2016). *Output Tabel Dinamis of Badan Pusat Statistika*. Indonesia. Retrieved from http://www.bps.go.id/mod/exportData/exportPDF. php.
- Weil, R. R., & C.Brady, Ny. (2016). the Nature and Properties of Soils. 15th edition. Constraints (Fifteenth). Macmillan: Macmillan Publishing Company.
- Zulbardi, M., A.R. Siregar dan I-W. Mathius. 1983.Rice straw with the corn and rice bran as food buffalo. Pros. Large Ruminant Scientific Meeting.Puslitbangnak, Bogor. Hlm 33-36.

ICSHGS 2017 INTERNATIONAL CONFERENCE ON SOCIAL, HUMANITIES AND GOVERNMENT SCIENCE 2017

Certificate of Appreciation

This certificate awarde to:

JAMILAH

PRESENTER

at the International Conference on Social, Humanities and Government Science (ICSHGS) held in Palembang, South Sumatra Indonesia on 26th - 27th January 2017

Ew and Drs. H. Joko Siswanto, M.Si (Rector Tamansiswa Palembang University)

Dr. Maulana, M.M (Programme Committee Chair)

Organised by:

TAMANSISWA PALEMBANG UNIVERSITY

Tamansiswa Street No. 216 Palembang, South Sumatra Indonesia

